Strong-Coupled Superconductors

With strong electron-phonon coupling, the Cooper pairs and quasiparticles have a
finite lifetime. This is modeled by introducing a “gap function” A(w) which is both
complex and frequency dependent.

T. is enhanced by strong-coupling effects:
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As opposed to BCS weak coupling:
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a?(w)F(w) is called the Eliashberg function.
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Fig. 4. The gap ratio 24, /(kT.) as a function of T./oh,. The black drcles indicate
theoretical calculations, with some of the elements and a couple of binary alloys
indicated. The unmarked arcles refer mostly to vanous binary alloys [57]. These
calculations use an electron-phonon spectral function =iv)*F(v) and value of g
extracted from tunneling experiments, or, in some cases taken from calculations
[58,59]. Selected experimental values are indicated with red squares. Mote the
excellent agreement of theorny with experiment in the case of 5n, Pb and Hg, with
more deviation in the case of vanadium and niohioum. Sources are available in Ref.



The Eliashberg Function

Electron-phonon scattering
from k to k” with creation of
a phonon ha, ., with
polarization A
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is a dimensionless measure

of the strength of

electron-phonon coupling.

Ranges from 0.1 to 1.7 in various metals
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Predictions for A in the Strong Coupling Limit
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Fic. 111.8. Comparison of the theoretical electron—phonon coupling constants obtained

from pseudopotentials with those obtained empirically using McMillan’s formula,



Predictions for T_in the Strong Coupling Limit

In the strong-coupling limit:
k
Te ~ Mw?) ~ M

k is the spring constant and M is the ionic mass. This argues for materials with
large ion restoring forces and light masses (hydrogen)

Allen and Dynes, Phys. Rev. B 12, 905 (1975)

T, = 0.183  A{w?) forA>10and u* =0

T. increases with no saturation for very strong coupling!

T, (K) (1) (K} N(0)<I2> V(05 (K) A
Nb 9.2 175 4.7 183 0.85
NbsSn 18.1 146 7.9 163 1.67

Pb 7.2 60 24 65 1.55




Prediction for Isotope Exponent o
in the Strong Coupling Limit

T.M% = constant
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Tunneling Spectroscopy and the Eliashberg Function
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Fig. 1.6. (a) Normalized conductance of a tunnel junction involving lead at 0.3 K
(after Giaever, Hart, and Megerle, 1962). Note the extremely sharp energy gap. | L 110
The small deviations of the density of states from unity in the 4-10 mV range are 0 9 10
due to the phonons of lead. (b) Illustration of the use of tunneling to determine (b) £(meV)

the effective phonon spectrum o?F(w) of a strong-coupling superconductor. The
Pb phonons are revealed in detail by the analysis of McMillan and Rowell (1965).
Curves A, B, and C, respectively, show the second derivative, first derivative, and
effective phonon spectrum for lead.



Extracting the Eliashberg Function from Tunneling Spectroscopy Data
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Tunneling Spectroscopy and the Eliashberg Function
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Fic. 111.6. Comparison of the phonon density of states of Pb as obtained from (a) neu-
tron scattering (after Stedman et al.'®) with that obtained from (b) electron tunneling (after
McMillan and Rowell'").



Extracting the Eliashberg Function from Tunneling Spectroscopy Data

Fig. 4.5. (2) The veal and imaginary parts of the computed gap function A(w) for
lead obtained from the data of McMillan and Rowell (1969). In this figure, the

dashed curve is the imaginary part and the solid curve is the real part of the gap
function.
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20 Fig. 4.4. A comparison of the a’F(w) functions for lead obtained from the data
‘ of McMillan and Rowell (1969) as reduced using the variational scheme (dashed
3.0 curve) and using the nonvariational scheme of Galkin, D’yachenko, and Svistunov

(1974) (solid curve). (After Galkin, D’vachenko, and Svistunov, 1 974‘1_)
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