Strong-Coupled Superconductors With strong electron-phonon coupling, the Cooper pairs and quasiparticles have a finite lifetime. This is modeled by introducing a "gap function" $\Delta(\omega)$ which is both complex and frequency dependent. T_c is enhanced by strong-coupling effects: Strong-coupling effects. As opposed to BCS weak coupling: $$T_c = \frac{\hbar \omega_{\ell n}}{1.2k_B} \exp\left(\frac{-1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}\right)$$ $$T_c \cong \hbar \omega_D e^{-1/(\lambda - \mu^*)}$$ $$D(0)V = \lambda - \mu^*$$ $$T_c \cong \hbar \omega_D e^{-1/(\lambda - \mu *)}$$ $D(0)V = \lambda - \mu^*$ where $\omega_{\ell n}$ is used as an average phonon frequency, and it and λ are defined by $$\omega_{\ln} \equiv \exp\left[\frac{2}{\lambda} \int_{0}^{\infty} dv \, \ln(v) \frac{\alpha^{2}(v) F(v)}{v}\right] \approx e^{\langle ln\omega \rangle}$$ Electron-Phonon coupling Phonon DOS $$\lambda \equiv 2 \int_{0}^{\infty} dv \, \frac{\alpha^{2}(v) F(v)}{v} \quad \text{is called the McMillan parameter.}$$ $\alpha^2(\omega)F(\omega)$ is called the Eliashberg function. $$\mu^* = rac{\mu}{1 + \mu \ln(rac{\epsilon_F}{\hbar \omega_p})}$$ (more about Coulomb repulsion below) ## **Strong-Coupling Correction to Gap Ratio** $$\frac{2\Delta_0}{(k_BT_c)} = 3.53 \left[1 + 12.5 \left(\frac{T_c}{\omega_{ln}} \right)^2 \ln \left(\frac{\omega_{ln}}{2T_c} \right) \right]$$ $$\omega_{\ln} = \exp\left[\frac{2}{\lambda} \int_0^\infty dv \ln(v) \frac{\alpha^2(v) F(v)}{v}\right]$$ $$\approx e^{\langle ln\omega \rangle}$$ Fig. 4. The gap ratio $2 A_0 / (k_B T_c)$ as a function of $T_c / \omega_{\ell n}$. The black circles indicate theoretical calculations, with some of the elements and a couple of binary alloys indicated. The unmarked circles refer mostly to various binary alloys [57]. These calculations use an electron–phonon spectral function $\alpha(v)^2 F(v)$ and value of μ^* extracted from tunneling experiments, or, in some cases taken from calculations [58,59]. Selected experimental values are indicated with red squares. Note the excellent agreement of theory with experiment in the case of Sn, Pb and Hg, with more deviation in the case of vanadium and niobioum. Sources are available in Ref. ### The Eliashberg Function Electron-phonon scattering from k to k' with creation of a phonon $\hbar\omega_{\lambda,k'-k}$ with polarization λ $$\alpha^{2}(\Omega)F(\Omega) = \frac{\int \frac{\mathrm{d}S_{k'}}{|\vec{v}_{k'}|} \int \frac{\mathrm{d}S_{k}}{|\vec{v}_{k}|} \frac{1}{(2\pi)^{3}\hbar} \sum_{\lambda} |g_{k',k,\lambda}|^{2} \delta[\Omega - \omega_{\lambda,k'-k}]}{|\vec{v}_{k'}|}$$ $$\lambda \equiv 2 \int_{0}^{\infty} dv \frac{\alpha^{2}(v)F(v)}{v}$$ is a dimensionless measure of the strength of electron-phonon coupling. Ranges from 0.1 to 1.7 in various metals Weak-coupling BCS Approx: $\lambda << 1$ Element of Fermi surface area Group velocity on the Fermi surface DOS at $$E_{\scriptscriptstyle F}$$ average of el-ph matrix element 2 $\lambda \cong \frac{N(0)\langle I^2\rangle}{M\langle \omega^2\rangle}$ Ionic ma Mean-square phonon frequency Fermi surface ## Predictions for λ in the Strong Coupling Limit Fig. III.8. Comparison of the theoretical electron-phonon coupling constants obtained from pseudopotentials with those obtained empirically using McMillan's formula. ## **Predictions for T_c in the Strong Coupling Limit** In the strong-coupling limit: $$T_c \sim \sqrt{\lambda \langle \omega^2 \rangle} \sim \sqrt{\frac{k}{M}}$$ *k* is the spring constant and *M* is the ionic mass. This argues for materials with large ion restoring forces and light masses (hydrogen) Allen and Dynes, Phys. Rev. B <u>12</u>, 905 (1975) $$T_c = 0.183 \sqrt{\lambda \langle \omega^2 \rangle}$$ for $\lambda > 10$ and $\mu^* = 0$ T_c increases with no saturation for very strong coupling! | | <i>T</i> _e (K) | (Ω) (K) | N(0) <i<sup>2></i<sup> | $\sqrt{\langle \Omega^2 \rangle} (K)$ | λ | |-------|---------------------------|---------|---------------------------|---------------------------------------|------| | Nb | 9.2 | 175 | 4.7 | 183 | 0.85 | | Nb₃Sn | 18.1 | 146 | 7.9 | 163 | 1.67 | | Pb | 7.2 | 60 | 2.4 | 65 | 1.55 | # Prediction for Isotope Exponent α in the Strong Coupling Limit $$T_c M^{\alpha} = constant$$ $$\alpha = \frac{1}{2} \left[1 - \left(\mu^* \ln \frac{\langle \Omega \rangle}{1.20 T_c} \right)^2 \frac{1 + 0.62 \lambda}{1 + \lambda} \right]$$ $$\mu^* = \frac{\mu}{1 + \mu \ln(\frac{\epsilon_F}{\hbar \omega_D})}$$ $$\lambda_{BCS,weak} = D(0)V_p$$ $$\mu = D(0)V_C$$ $$\mu^* = \frac{\mu}{1 + \mu \ln(\omega_C/\omega_D)}$$ #### **Tunneling Spectroscopy and the Eliashberg Function** **Fig. 1.6.** (a) Normalized conductance of a tunnel junction involving lead at 0.3 K (after Giaever, Hart, and Megerle, 1962). Note the extremely sharp energy gap. The small deviations of the density of states from unity in the 4–10 mV range are due to the phonons of lead. (b) Illustration of the use of tunneling to determine the effective phonon spectrum $\alpha^2 F(\omega)$ of a strong-coupling superconductor. The Pb phonons are revealed in detail by the analysis of McMillan and Rowell (1965). Curves A, B, and C, respectively, show the second derivative, first derivative, and effective phonon spectrum for lead. #### **Extracting the Eliashberg Function from Tunneling Spectroscopy Data** $$\Delta(\omega) = \Delta_1(\omega) + i \Delta_2(\omega)$$ $\Delta_2(\omega) \sim 1$ / lifetime of excitations $\Delta_2(\omega)$ is large when phonon emission is possible DOS with complex Δ $$N(\omega) = \text{Re}\left\{\frac{|\omega|}{[\omega^2 - \Delta^2(\omega)]^{1/2}}\right\}$$ #### **Tunneling Spectroscopy and the Eliashberg Function** FIG. III.6. Comparison of the phonon density of states of Pb as obtained from (a) neutron scattering (after Stedman *et al.*¹⁸) with that obtained from (b) electron tunneling (after McMillan and Rowell¹⁷). #### **Extracting the Eliashberg Function from Tunneling Spectroscopy Data** Fig. 4.5. (a) The real and imaginary parts of the computed gap function $\Delta(\omega)$ for lead obtained from the data of McMillan and Rowell (1969). In this figure, the dashed curve is the imaginary part and the solid curve is the real part of the gap function. **Fig. 4.4.** A comparison of the $\alpha^2 F(\omega)$ functions for lead obtained from the data of McMillan and Rowell (1969) as reduced using the variational scheme (dashed curve) and using the nonvariational scheme of Galkin, D'yachenko, and Svistunov (1974) (solid curve). (After Galkin, D'yachenko, and Svistunov, 1974) #### References E. L. Wolf, *Principles of Electron Tunneling Spectroscopy*, (Oxford University Press, New York, 1989) page 159 ff Webb, G. W. and Marsiglio, F. and Hirsch, J. E., Superconductivity in the elements, alloys and simple compounds, Physica C <u>514</u>, 17-27 (2015). M. L. Cohen in BCS: 50 Years, (World Scientific, 2011), page 375 Robert M. White and Theodore H. Geballe, Long Range Order in Solids, (Academic Press, 1979), page 110 J. B. Ketterson and S. N. Song, Superconductivity, (Cambridge Univ. Press, 1999), page 240